High School / Unscored Student Samples ITEM \#2

MATH ANNOTATIONS * SMARTER BALANCED PERFORMANCE TASK

Focus
 Standards and Claim
 Claim 3
 7.EE.B. 4

Lights, Candles, Action!

Your friend Abbie is making a movie. She is filming a fancy dinner scene and she has two types of candles on the table. She wants to determine how long the candles will last.
She takes a picture, lights the candles, and then lets them burn for 1 hour. She then takes a second picture. You can assume that each candle burns at its own constant rate.

First Picture:

Time = $\mathbf{0} \mathbf{h r s}$

Second Picture:

Time = $1 \mathbf{h r}$

Candle Type A initial height $=20 \mathrm{~cm}$
Candle Type B initial height $=10 \mathrm{~cm}$

Candle Type A height after burning for 1 hour $=16 \mathrm{~cm}$
Candle Type B height after burning for 1 hour $=9 \mathrm{~cm}$
You will use this information to help Abbie think about the candles she might use for her film.

Item Prompt

Candles of each type were lit at the same time. Abbie thinks that since Candle Type A burns more quickly than Candle Type B, that it will burn out (have a height of 0 cm) first.
Julie thinks that since Candle Type B starts out much shorter than Candle Type A, it will be the candle to burn out first.
Which candle will burn out first? Give a mathematical explanation to convince Abbie and Julie of your solution. Clearly identify the quantities involved.

Sample Responses

Sample Response A

A initial: $20 \mathrm{~cm} \quad-4 \mathrm{~cm} / \mathrm{hr}$
B initial: $10 \mathrm{~cm} \quad-1 \mathrm{~cm} / \mathrm{hr}$
$20-4=16-4=12-4=8-4=4-4=0$
$10-1=9-1=8-1=7-1=6-1=5$
---1hr------2hr-------3hr-----4hr-----5hr-----

Candle A will burn out first. Every hour, candle A decreases in height by 4 cm while candle B decreases in height by 1 cm . After 5 hours, candle A will be 0 cm and candle B will still be 5 cm tall.

Sample
 Response B

Candle A will burn out first because the rate of the decrease in height per hour is greater. Candle A burns at $4 \mathrm{~cm} /$ hour. Candle B burns at $1 \mathrm{~cm} /$ hour.

Candle $A y=4 x+20$
Candle By $=x+10$

Sample	
Response C	Type A.
Type A	
$0 \mathrm{hrs}-20$	
$1 \mathrm{hr}-16$	
$2 \mathrm{hr}-12$	
$3 \mathrm{hr}-8$	
$4 \mathrm{hr}-4$	
$5 \mathrm{hr}-0$	
	Type B
$0 \mathrm{hrs}-10$	
$1 \mathrm{hr}-9$	
$2 \mathrm{hr}-8$	
$3 \mathrm{hr}-7$	
$4 \mathrm{hr}-6$	
$5 \mathrm{hr}-5$	
$6 \mathrm{hr}-4$	
$7 \mathrm{hr}-3$	
$8 \mathrm{hr}-2$	
$9 \mathrm{hr}-1$	
$10 \mathrm{hr}-0$	

Sample Response D

Sample
Response E
Sample
Response F
Sample
Response G

I think Candle A will burn out first because it burns out more quickly than Candle B. That's because candle A has a much smaller circumference than Candle B.

Ex.
Every hour, candle A burns 4 cm and candle B burns only 1 cm
You could make a chart to represent this.
Candle A Candle B
Ohr $20 \mathrm{~cm} \quad 10 \mathrm{~cm}$
$1 \mathrm{hr} \quad 16 \mathrm{~cm} \quad 9 \mathrm{~cm}$
$2 \mathrm{hr} \quad 12 \mathrm{~cm} \quad 8 \mathrm{~cm}$
$3 \mathrm{hr} \quad 8 \mathrm{~cm} \quad 7 \mathrm{~cm}$
$4 \mathrm{hr} \quad 4 \mathrm{~cm} \quad 6 \mathrm{~cm}$
$5 \mathrm{hr} \quad 0 \mathrm{~cm} \quad 5 \mathrm{~cm}$

Candle A and B are burning at different time. Candle A is thinner and B is thicker but smaller so it burns first.
$20-4 h=0 \quad 4 h=5$
$10-h=0 h=10$

Candle Type A will burn out first because mathematically, every hour candle A's height decreases by 4 centimeters while candle B only decreases by 1 cm .

Candle A:
Number of Hours Burned: $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
Height after each hour: $\begin{array}{llllll}16 & 12 & 8 & 4 & 0 & X\end{array}$
Candle B:
Number of Hours Burned: $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Height after each hour: $\begin{array}{lllllllllll}8 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
Using the table, we could clearly see that candle A burns out way quicker than candle B because candle A burns out within 5 hours of being lit while candle B burns out within 10 hours of being lit.

Sample
 Response H

Sample
Response I

Candle Type A will be the first one to reach the height of 0 cm first since it burns out at a faster rate. Type B will be at 4 cm by the time type A has completely burnt out.

Candle A will burn out first because even though the candle is long in height, it burns out 3 times the length of candle B. Example, candle A is 20 cm but it burns out $4 \mathrm{~cm} / \mathrm{hr}$ which results to 16 and now it will burn out after 4 hours. Candle B will burn out after 9 hrs since it only burns $1 \mathrm{~cm} / \mathrm{hr}$ and the height of candle B is 10 .

