High School / Unscored Student Samples

Focus
Standards and Claim

Stimulus

Claim 2

FLE.B. 5

Lights, Candles, Action!

Your friend Abbie is making a movie. She is filming a fancy dinner scene and she has two types of candles on the table. She wants to determine how long the candles will last.
She takes a picture, lights the candles, and then lets them burn for 1 hour. She then takes a second picture. You can assume that each candle burns at its own constant rate.

First Picture:

Time $=\mathbf{0} \mathbf{h r s}$

Second Picture:

Time = $\mathbf{1} \mathbf{h r}$

Candle Type A initial height $=20 \mathrm{~cm}$
Candle Type B initial height $=10 \mathrm{~cm}$

Candle Type A height after burning for 1 hour $=16 \mathrm{~cm}$
Candle Type B height after burning for 1 hour $=9 \mathrm{~cm}$
You will use this information to help Abbie think about the candles she might use for her film.

Item Prompt

You have decided to use functions to help Abbie think about the candles.
You show her how to represent the height of a candle, \boldsymbol{h}, as a function of time, \boldsymbol{t}, using this equation:

$$
h=k+n t
$$

First, explain to Abbie what \mathbf{k} and \mathbf{n} represent in order to model the different candles. Be specific in your explanation.

Sample Responses

Sample Response A

$\mathrm{k}=$ is how much the candle burns in one hour
$y=-1 x+10$
(burns 1 cm in an hour)
$y=-4 x+20$
(burns 4 cm in an hour)
$\mathrm{n}=$ the height of the candle originally

Sample
 Response B

$\mathrm{k}=$ initial height
$\mathrm{n}=$ number of cm dropped
$20=20+0(0)$
$20=20$

Sample
 Response C

For candle A:
$k=20$, original height of candle
$n=-4$, rate at it burns/hr
For candle B:
$k=10$, original height of candle
$n=-1$, rate at it burns/hr
$\mathrm{k}=$ original height of candle
$\mathrm{n}=$ rate at which candle burns $\mathrm{cm} / \mathrm{hr}$
Sample
Response D
$\mathrm{k}=$ initial height
$\mathrm{n}=$ constant rate of the candle burning
Candle A: h=20 = (4)t
Candle B: $\mathrm{h}=10$ - (1)t

Sample

Response E
k represents the height after burning the candle for a specific amount of time.
n represents the height of how much is burned off during the time for example:
$\mathrm{k}=16 \mathrm{~cm} \mathrm{n}=4 \mathrm{~cm}$
$\mathrm{h}=\mathrm{k}+\mathrm{nt}$
$h=16+4(1)=h=16+4$
$h=20 \mathrm{~cm}$

Sample

Response F
The " h " is the height of the candle, as the function of time is " t ." The letter " k " symbolizes to be the subtraction of both candles in every hour.

Sample Response G

And " n " is the missing value that needs to solve.
k is the starting height, while n is the rate at which the height is decreasing.

Sample
Response H

Sample
Response I

Sample

Response J

Sample
Response K
$\mathrm{h}=$ height
t = time
n will be the amount of hours
k will be the height of the candle from the beginning

Candle A $=20-4 \mathrm{~cm}(\mathrm{t})$
Initial amount $=20=k$
Amount decreases by hour $=4 \mathrm{~cm}=n$
Candle $B=10-1 \mathrm{~cm}$
Initial amount $=10=k$
Amount decreases by hour $=1 \mathrm{~cm}=\mathrm{n}$
k is the original height of Candle Type A and Candle Type B before they began to burn.
n is negative. It's the difference of height after candle Type A \& Candle Type B's 1 hour of burning.
k is the rate of change and n is

$$
\begin{aligned}
& 2 n-1=8 \\
& 2 n=9 \\
& n=9 / 2 \\
& 8=-1+2(9 / 2)
\end{aligned}
$$

